Enabling DER Integration with OpenADR

- Challenges and opportunities with DER
 - What is it?
 - Why is it becoming more important?
- How does OpenADR enable the integration of DER into grid operations?
- What are some real world examples of OpenADR enabling DER integration?
- What is OpenADR's competition when it comes to DER integration?
- How should the OpenADR Alliance address DER?
 - Do nothing different?
 - DER relevant branding and positioning?
 - Technical improvements to support DER?

Overview – James Mater, QualityLogic

- OpenADR Applications in DER Integration
 - Integrating DER in wholesale markets Aditya Aggarwal, Siemens Canada
 - OpenADR for DER: CEA-2045 and DER Aggregation Walt Johnson, EPRI
- Standards Competition Panel discussion
 IEC 61850, IEEE 2030.5 (SEP 2), TE and ?
- OpenADR Alliance Strategy and Next Steps All: James Moderating

What is DER?

What is DER?

Distributed Energy Resources include any resource that can add energy to the grid or can modify energy behavior

...but is not controlled by a Utility SCADA operator

- Examples include:
 - Rooftop PV
 - Small storage systems
 - EV Charging
 - Adjustable resources (thermostats, lights, HVAC)

What is the Challenge?

- DER is typically installed and controlled independent of grid operations – e.g., not coordinated
 - In small quantities, not a problem
- But at scale (arguments abound at what level) can pose a problem OR an opportunity (if coordinated)
- Challenges are:
 - Multi-objective optimization (or laminar decomposition)
 - How to meet objectives of both the grid and asset owners
 - How to communicate grid needs in a timely fashion
 - Communications not standardized if they exist
 - How to motivate DER owner behaviors

Pricing/regulatory issues

Use Cases

- Perspectives
 - □ ISO/RTO
 - Distribution Utility
 - Asset Aggregators
 - Asset Owners
- DR Use Cases Modify behavior of loads through specific requests
 - DER in OpenADR is storage
- PV Use Cases modify behavior of inverters through specific autonomous behavior settings

Walt's Use Cases

Three primary classes of communications with DER

- Direct device manipulation at the switch and relay level e.g. Modbus settings
- Command and Control direct instructions for behaviors
 - DRLC or start battery discharging and/or
 - Settings for autonomous behaviors (automatic responses to sensed grid conditions)
- Inform and Motivate
 - Price signals
 - Event signals
 - Transactive Energy Signals

CA Rule 21 Use Cases

CA Rule 21 DER Communications

Smart Inverter Functions

Autonomous Functions	Hawaiian Electric Priority	Effective date of Implementation
Anti-Islanding	Mandated – High Implemented	10/1/2015
TrOV-2	Mandated – High Implemented	2/9/2015
Low-High Volt Ride-Through	Mandated – High Implemented	Full Settings 10/1/15
Low-High Frequency Ride- Through	Mandated – High Implemented	Full Settings 10/1/15
Volt-Var Control	Mandated – Low Phase 2	12 Months after UL 1741 Supplement A is Approved by UL
Ramp Rate	Mandated – Low Phase 2	12 Months after UL 1741 Supplement A is Approved by UL
Fixed Power Factor	Mandated – High Phase 1	January 1, 2016
Soft-Start Reconnection	Mandated – High Phase 2	12 Months after UL 1741 Supplement A is Approved by UL
Frequency-Watt	Mandated – High Phase 1	12 Months after UL 1741 Supplement A is Approved by UL
Voltage-Watt	Mandated – High Phase 1	12 Months after UL 1741 Supplement A is Approved by UL
Command DER to Connect or Disconnect	Mandated – High Phase 2	No UL Certification Required
Remote Configurability	Mandated – High Phase 2	12 Months after UL 1741 Supplement A is Approved by UL

Table ES-1: Mandated High-Priority Advanced Inverter Functions in Hawaiian Electric Rule 14H

